

# Solving Trolly Problem via Reinforcement Learning

Chaewon Yoo, Mingyu Kim, Seungjoo Yoo, Beomjun Shin

Speaker: Beom Jun Shin

# Contents

01

Background Existing Works 02

Improvement with Bayesian approach

03

Results & Limitations

# Background



Trolly Problem

Would you kill one person to save five?

\*Utilitarianism vs Deontology

https://theaxiom.ca/ethical-murder-the-trolley-dilemma/

#### < Reinforcement Learning Under Moral Uncertainty >

#### Multi-objective RL

solve the problem of finding the set of efficient trade-offs among competing objectives

does not address how to choose which trade-off policy to deploy



Which ethical theory should an agent follow?

A) By Voting system with credence

#### < Reinforcement Learning Under Moral Uncertainty >

**Voting System** 

: Claiming each theory's opinion based on the credence and budgets

#### **Nash Voting**

Each theory provides continuous vote value for actions under their remaining cost budget

#### Variance Voting

Take the preferences of each theory's action Q and then transform to use Variance-SARSA



#### < Reinforcement Learning Under Moral Uncertainty >

#### Problems in Voting System

- Credence is determined by designer's beliefs 

  controversial
- Idea Under Multi-Agent (= Theory) RL: Computation complexity, ...
- Incomparable theories → hard to extend in voting system

(e.g. No Compromise in Nash voting)

How to handle these problems?



#### <Ethical and Statistical Considerations in Models of Moral Judgments>

Goal: Having the agent 1) learn about its ethical objective function while

2) making decisions for maximizing rewards



Bayesian Approaches : Update beliefs by maximizing a combined utility function/ represented as a linear combination of different ethical utility functions

Note: Motivating the agent to learn what is "ethical" minimizing our base belief

Apply Bayesian's perspective for Moral Decision making!

# Goal

Implement the situation of moral uncertainty using Bayesian Reinforcement Learning

## Bayesian Reinforcement Learning

$$Posterior \propto (likelihood imes prior)$$
 able to update prior

- 1. Prior Distribution
  - a. Represent the inital beliefs
- 2. Posterior Distribution
  - a. Represent the update belief after observing datas
- 3. Bayesian Update
  - a. Update the prior distribution to the posterior using Bayes Theorm

## Bayesian Reinforcement Learning

Implementation Steps

Initialization

Initialize prior parameter = [0.5, 0.5] credence for each theory

Observation

Observe data (state, action, and reward)

Update

Update the posterior distribution with the observed data

**Decision Making** 

Use the updated posterior distribution to make decisions (Involves sampling from the posterior)

Iteration

Repeat step 2,3,4

### Implementation

#### **Environment**





https://metadrive-simulator.readthedocs.io/





https://github.com/PKU-Alignment/safety-gymnasium

### Implementation

#### Results

- Apply a bayesian approach at each episode
  - ----> cost sensitive!



Safety-goal 1
Safety-goal 2





MetaDrive 1

MetaDrive 2

### Significance & Limitations

01

Consider more situation-appropriate prior distribution

02

Applicable in situations
where we can't
determine prior parameter

03

Increased action flexibility compared to Voting

#### References

- Adrien Ecoffet et al., Reinforcement Learning Under Moral Uncertainty, ICML, 2021.
- David et al., Reinforcement Learning as a Framework for Ethical Decision Making, AAAI, 2016.
- T Sivill, Ethical and Statistical Considerations in Models of Moral Judgments
   Frontiers in Robotics and AI, 2019

# Thank you

Solving Trolly Problem via Reinforcement Learning