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- Causal Inference with Bayesian Deep Learning

- LLM Reasoning

- Invariant Representation Learning
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Introduction
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Introduction
Let’s Cook!

https://www.newsis.com/view/NISX20190423_0000629293

https://www.taketwotapas.com/all-purpose-steak-seasoning-blend/
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Introduction
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Introduction
Let’s Cook!

To achieve our objectives,
we should modify the process efficiently

while maintaining outputs!
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Introduction
Let’s Cook!

Q) Can we apply the same strategy
when fine-tuning our model?
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Introduction
Pre-training & Fine-tuning
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Introduction
PEFT (Parameter-Efficient Fine Tuning)



Mingyu Kim, Yonsei University 11

Loss Perspective
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Loss Perspective
ULMFiT

Universal Language Model Fine-tuning for Text Classification (ACL 18’)

- Gradual Unfreezing

- Discriminative Fine-tuning

- Slanted Triangular Learning Rates
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Loss Perspective
ULMFiT

Universal Language Model Fine-tuning for Text Classification (ACL 18’)

1) Gradual Unfreezing: First, train only the last layer, then train the last two layers, and so on…

2) Discriminative Fine-tuning: Learning rate of bottom layer ≠ Learning rate of top layer

3) Slanted Triangular Learning Rates: Quickly converge to region of parameter space, and refine
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Loss Perspective
LP-FT

Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution (ICML 22’)

- OOD error of fine-tuning is high when we initialize with a fixed or random head

- Find proper head with linear probing, then fine-tuning with that head
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Loss Perspective
Mixout

Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models (ICLR 20’)

- Dropout: randomly kill nodes or set all connected weights to 0

- Instead, this method randomly replace with pretrained model’s parameters.’

Why? The model parameter after the t-th SGD step is already far from the origin.
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Loss Perspective

On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines (ICLR 21’)

- Hypothesis

1. The instability of BERT during FT is not due to catastrophic forgetting or overfitting.

Rather, the training process itself is unstable and does not work well.

(※ catastrophic forgetting : The tendency to completely and abruptly forget previous information)

2. This instability is caused by the following two reasons.

1) Difficulty due to vanishing gradients by optimizer! Need to use the proper Adam optimizer.

2) Large variance on the validation set! Ensure sufficient training up to 20 epochs.

AdamW
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Loss Perspective

On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines (ICLR 21’)

AdamW
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Loss Perspective
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Loss Perspective
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Loss Perspective

On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines (ICLR 21’)

Why AdamW?

AdamW
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Loss Perspective

On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines (ICLR 21’)

So AdamW!

AdamW
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Intermediate Perspective
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Parameter-Efficient Transfer Learning for NLP (ICML 19’)

- Plain fine-tuning is parameter inefficient. (Entire new model for every task)

- Adapter add only a few trainable parameters per task, while original parameters are frozen.

- Initialize adapter layer with near-identity. (= near-zero without internal skip part)

Intermediate Perspective
Adapter
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Intermediate Perspective
Adapter
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AdapterDrop: On the Efficiency of Adapters in Transformers (EMNLP 21’)

- Remove adapters from lower transformer layers both training (random) & inference (lower)

- Backpropagate through as few layers as possible. (further improve the efficiency of training)

Intermediate Perspective
Adapter
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Domain Generalization using Pretrained Models without Fine-tuning (arXiv 22’)

- Introduce the label adapter to match the output dimension (e.g. PT on ImageNet + CIFAR-100)

- Utilize the diverse multiple pretrained models simultaneously (SEDGE)

Intermediate Perspective
Adapter
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LoRA: Low-Rank Adaptation of Large Language Models (ICLR 22’)

- Problem of Adapter layer: Not parallel computation, need to handle sequentially

- Low-Rank Adaptation (LoRA): ℎ = 𝑊𝑊0 + ∆𝑊𝑊, where 𝑊𝑊0 are pre-trained and ∆𝑊𝑊 = 𝐵𝐵𝐵𝐵

- ∆𝑊𝑊 is zero at the beginning of training (to guarantee its performance with pre-trained one)

Intermediate Perspective
LoRA
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LoRA: Low-Rank Adaptation of Large Language Models (ICLR 22’)
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The Expressive Power of Low-Rank Adaptation (ICLR 24’)

- Theoretical Analysis of LoRA method in terms of the relationship with full fine-tuning

- If we conduct LoRA to all layers, we can express any full fine-tuning with LoRA for large R.

Intermediate Perspective
LoRA
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Parameter-Efficient Transfer Learning with Diff Pruning (ACL 21’)

- Learns a task-specific diff vector (𝜃𝜃_𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘=𝜃𝜃_𝑝𝑝𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛𝑒𝑒𝑑𝑑+𝛿𝛿_𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘)

- If we can regularize 𝛿𝛿_𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘 to be sparse such that ‖𝛿𝛿_𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘 ‖_0≪‖𝜃𝜃‖_0, this is more efficient way.

- L0-norm penalty to encourage sparsity

Intermediate Perspective
Diff Pruning
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BitFit: Simple Parameter-efficient Fine-tuning for 

Transformer-based Masked Language-models (ACL 22’)

- BitFit = Bias-terms Fine-tuning = Fine-tunes only the bias term

- Only 0.08% of the BERT Large Model

Intermediate Perspective
BitFit
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Input Perspective
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Input Perspective
Prefix-Tuning

Prompt?

- Traditional supervised learning trains a model to take in an input x and predict an output y

- Prompt based learning is based on language models that model the probability of text directly

- The original input x is modified using a template into a textual string prompt x’
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Input Perspective
Prefix-Tuning

Prefix-Tuning: Optimizing Continuous Prompts for Generation (ACL 21’)

- Prepends a sequence of continuous task-specific vectors to the input, prefix

- Prefix consists entirely of free parameters (virtual tokens)
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Input Perspective
Prefix-Tuning

Towards a Unified View of Parameter-Efficient Transfer Learning (ICLR 22’)

- While effective, the critical ingredients for success and connections are poorly understood.

- Provides unified framework with Adapters + Prefix Tuning + LoRA
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Input Perspective
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Input Perspective
Prefix-Tuning

Finetuned Language Models Are Zero-Shot Learners (ICLR 22’)

- Proposes Finetuned Language Net (FLAN) that adopts instruction tuning

(e.g.) In classification tasks an option token is added so that the classification head is not needed.
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Input Perspective
Prefix-Tuning

Scaling Instruction-Finetuned Language Models (arXiv 22’)

- Chain-of-Thought (CoT)
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Input Perspective
Prefix-Tuning

Scaling Instruction-Finetuned Language Models (arXiv 22’)
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Input Perspective
Prefix-Tuning

Transformers generalize differently from information stored in context vs in weights (arXiv 22’)

- Then, what if only LLM uses ICL to determine its output…? How to check this phenomena…?

- This paper provides the empirical experiment between weights during training vs. info of ICL
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Input Perspective
Prefix-Tuning
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Input Perspective
Prefix-Tuning

Transformers generalize differently from information stored in context vs in weights (arXiv 22’)

- Then, what if only LLM uses ICL to determine its output…? How to check this phenomena…?
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Input Perspective
Prompt Optimization

BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning (CVPR 23’)

- Prompting Technique in Computer Vision

- Adapting data for model by learning a single input perturbation



Mingyu Kim, Yonsei University 44

Input Perspective
Prompt Optimization

AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts 

(EMNLP 20’)

- Automated method to create prompts for a diverse set of tasks, but no interpretability here
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Input Perspective
Prompt Optimization

Automatic Prompt Optimization with "Gradient Descent" and Beam Search (EMNLP 23’)

- Make gradients by asking LLM the reason of failure.

- Create revised prompt candidates with gradient and make bandit selection.
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Input Perspective
Prompt Optimization

TextGrad: Automatic "Differentiation" via Text (arXiv 24’)

- Extension of text-based gradient optimization method to diverse packages
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Model Perspective
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Model Perspective
ID vs. OOD

- Supervised learning succeeds when training and test data distributions match. (ID)

- Supervised learning also handles distribution shift setting. (OOD)
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Model Perspective
Model Merging

Robust fine-tuning of zero-shot models (CVPR 22’)

- Simply (weighted) averaging the FT models’ parameters can enhance the OOD performance!
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Model Perspective
Model Merging

Averaging Weights Leads to Wider Optima and Better Generalization (UAI 18’)

- SWA: equally weighted average of the points traversed by SGD with a cyclical learning rate
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Model Perspective
Model Merging
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Model Perspective
Model Merging

Model soups: averaging weights of multiple fine-tuned models improves accuracy 

without increasing inference time (ICML 22’)

- Averaging fine-tuned models’ weights with vanilla / greedy strategy
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Model Perspective
Model Merging

Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization (ICLR 23’)

- Before fine-tuning, conduct auxiliary fine-tuning and average only at final steps
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Model Perspective
Model Merging

A Simple Baseline for Bayesian Uncertainty in Deep Learning (NeurIPS 19’)

- Adapts the idea of SWA in Bayesian Deep Learning using Gaussian Prior / Posterior (= SWAG)

- Conventional DNN lacks a representation of uncertainty, while BNN does not! (calibration)



Mingyu Kim, Yonsei University 55

Model Perspective
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Model Perspective
Task Arithmetic

Editing Models with Task Arithmetic (ICLR 23’)

- Shift to the specific task can be represented as the directed shift in parameter space.
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Model Perspective
Task Arithmetic

Editing Models with Task Arithmetic (ICLR 23’)

- Why Forgetting Is Important?

A) Data Privacy & Safety Issue!

Avi et al. Rethinking LLM Memorization through the Lens of Adversarial Compression (NeurIPS 2024)
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Conclusion
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Conclusion
Summary

With proper PEFT techniques, we can develop
both the ID/OOD performance and efficiency of the LLM.

01. LOSS

- ULMFiT

- LP-FT

- Mixout

- AdamW

02. INTERMEDIATE

- Adapter

- LoRA

- Diff Pruning

- BitFit

03. INPUT

- Prefix-Tuning

- Prompt Optimization

04. MODEL

- ID vs. OOD

- Model Merging

- Task Arithmetic
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Reference

Fall 2024, <자연어처리> (송경우 교수님) 강의 자료

Fall 2024, <데이터사이언스를위한컴퓨터비전> (이기복 교수님) 강의 자료

All figures are adapted from the papers cited as the title of each slides.
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