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Generative Model
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1) Generation: If we sample 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛~𝑝𝑝 𝑥𝑥 , this new data should look like original one.

2) Density Estimation: 𝑝𝑝 𝑥𝑥 should be high only for true 𝑥𝑥. (Outlier Detection)

3) Unsupervised Representation Learning: Be able to learn the data’s structure.

Figure adapted from Stefano Ermon, CS236 (Deep Generative Model), 2023.
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Generative Model

0. Intro
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Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Diffusion Model

Taxonomy of Generative Models
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Diffusion Model
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Motivation
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Diffusion Model
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Overall Architecture Forward Diffusion Process = Encoder in VAE
(By adding Gaussian Random Noise)

Reverse Diffusion Process (Denoising) = Decoder in VAE
(Goal of the Diffusion Model = Denoising DPM (DDPM))
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Diffusion Model
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Q) Why Diffusion Model Works?

A) Vanilla VAE has single latent variable, while Diffusion Model has 1000 to 4000~Inf latent variables! 
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Q) Why Diffusion Model Works?

A) Vanilla VAE has single latent variable, while Diffusion Model has 1000 to 4000~Inf latent variables! 
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Forward Process

1. DDPM
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= Adding small amount of Gaussian noise

vs. VAE: Not having parameter in encoder

(pre-defined Noise Generator = Hyperparameter!)
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Forward Process

1. DDPM
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= Adding small amount of Gaussian noise

to the sample in T steps, producing a sequence 

of Noisy sampes x_1 to x_T. (able in 1-step!)

※ 𝛽𝛽𝑡𝑡: (scaling down) variance from previous image
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Reverse Process

1. DDPM
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Forward = Gaussian // Reverse = ???

In 1949, Feller showed that the reverse will also

be Gaussian for very small variance β > 0.

Then, how can we estimate it?
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Reverse Process
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Reverse Process
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Reverse Process

1. DDPM
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KL Divergence between 
two Gaussian Distribution
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Reverse Process

1. DDPM
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Make NN of θ estimating noise!
Input = initial noise x_0 + time step t
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Results

1. DDPM
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Motivation

2. LDM
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DDPM works well compared with VAE!

Con) The dimension does not change.

= Computationally inefficient

= Inflexible Generation

Stable Diffusion arises here! (by LDM)

Figure adapted from Weng et al., What are Diffusion Models?, 2021.
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Motivation

2. LDM
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Q. How can we reduce the training and inference cost?

A. Conduct main task of feature extracting (= Semantic Compression) with lowered dimension,

and do remaining task (= Perceptual Compression) using Autoencoder while lowering dimension!
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Architecture

2. LDM
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Figure adapted from Weng et al., What are Diffusion Models?, 2021.
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Results
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Results
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LDM Revisiting

3. DiT
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U-Net as a backbone..?
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LDM Revisiting

3. DiT
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DDPM uses U-Net backbone for reverse diffusion process, and so does LDM.

However, U-Net’s inductive bias is not crucial to the performance of Diffusion Model.

Diffusion Transformer (DiT)

= Adapts Vision Transfomer (ViT) architecture that operates on latent patches

= Can inherit best practices and training methods from other domains

= Retains scalability, robustness, and efficiency
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Architecture

3. DiT
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Architecture
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Results

3. DiT
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※ FID (Frechet Inception Distance): Metric for feature distance between real & generated images
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Results

3. DiT
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Motivation

4. DDPO
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Goal: Train generative models to generate certain condition of images

satisfying Aesthetic Quality and Compressibility
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Goal: Train generative models to generate certain condition of images

satisfying Aesthetic Quality and Compressibility

One Possible Approach: Train generative models to align given prompts using RL concept!
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Motivation

4. DDPO
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Markov Decision Process (MDP)

An agent acts according to a policy π 𝑎𝑎 𝑠𝑠 , and trajectories are 𝜏𝜏 = 𝑠𝑠0, 𝑎𝑎0, … , 𝑠𝑠𝜏𝜏 , 𝑎𝑎𝜏𝜏 .
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Diffusion as MDP

4. DDPO
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1) State: Condition (Context, text) 𝒄𝒄 + Diffusion time step t + Image at time step t 𝒙𝒙𝑡𝑡
2) Action: Denoised Image 𝒙𝒙𝑡𝑡−1
3) Reward: Only computed in the final image by the given condition 𝑟𝑟 𝒙𝒙0, 𝒄𝒄

→ Optimized by policy gradient estimation



39

Diffusion as MDP

4. DDPO
YONSEI ARTIFICIAL INTELLIGENCE | YAI

Ways to set the reward

Aesthetic Quality: LAION aesthetics predictors (trained on 176,000 human ratings)

Compressibility: File size of the image after JPEG compression

Prompt Alignment: Prompt comparison with Vision-Language Model’s generated image caption
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Results

4. DDPO
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Results

4. DDPO
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Summary

5. Summary
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So, what can we do next for Diffusion?
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